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Chapter 1

Abstract

Recent advancements in medical imaging have seen the integration of artificial

intelligence (AI) and deep learning (DL) models, which have revolutionized the

field by offering novel methodologies for disease detection, diagnosis, and prognosis.

This thesis explores the potential of foundation models in medical imaging, focusing

on the generation of biomarkers from medical imaging datasets and evaluating

the efficacy of beta representations in lesion detection tasks across modalities,

such as PET-CT scans. While traditional biomarker identification relies heavily

on hypothesis-driven approaches, which are often labor-intensive and constrained

by existing knowledge, this research leverages data-driven methodologies such as

Convolutional Neural Networks (CNNs) for novel biomarker discovery.

Our work investigates the application of self-supervised learning (SSL) methods,

including clustering techniques like k-means and k-nearest neighbors (k-NN) classi-

fication, to annotate and identify biomarkers with minimal manual intervention.

This study also highlights the role of autoencoders in dimensionality reduction

and feature extraction, allowing for effective biomarker discovery and classification.
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Additionally, we delve into the use of information geometric principles, specifically

the beta representation, to model the manifold of medical imaging data and improve

the performance of clustering and classification tasks.

The research examines the impact of class distribution on the efficacy of classi-

fiers and clustering techniques, comparing the Riemannian metric with traditional

Euclidean approaches. By employing saliency heat maps and exploring the under-

lying data distribution, this study provides insights into the manifold structure and

its influence on clustering and classification outcomes. Our findings demonstrate

the robustness of the beta representation form, showcasing significant improvements

in performance when utilizing the Riemannian metric. The results underscore the

transformative potential of advanced geometric representations in enhancing the

interpretability and performance of machine learning techniques in medical imaging.

This thesis contributes to the understanding of information geometry’s appli-

cation in medical imaging, emphasizing the development of interpretable models

tailored for complex data structures and highlighting the potential for personalized

medicine advancements. Through this work, we aim to advance the field of medical

imaging by demonstrating the efficacy of innovative DL frameworks in improving

diagnostic accuracy and patient outcomes.

1.1 Introduction

The field of medical imaging has witnessed remarkable advancements with

the integration of artificial intelligence (AI), particularly deep learning (DL). The

integration of foundation models into medical imaging holds considerable promise,

given the routine collection of multimodal data (e.g., medical images, biological data,
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clinical notes) in clinical settings. Foundation models can potentially revolutionize

applications such as augmented surgical procedures, bedside decision support, and

interactive radiology reports,which require biomarker identifications as part of

diagnostic and investigative procedures. Traditionally, biomarker identification in

medical imaging has relied on hypothesis- driven approaches, constrained by existing

knowledge and biases. These methods often require extensive manual effort and

expertise. Conversely, data-driven methodologies powered by Convolutional Neural

Nets and Vision Transformers can uncover novel biomarkers from imaging data with

minimal manual intervention. However, the robustness of DL models is contingent on

the availability and quality of annotated datasets, which are often limited in medical

imaging datasets. Deep learning (DL) has become increasingly prominent in medical

imaging, offering new methodologies for disease detection, diagnosis, and prognosis

through both supervised and unsupervised learning approaches. Supervised learning

in DL has shown remarkable success in medical imaging applications, as exemplified

by Esteva et al. (2017), who utilized deep neural networks to diagnose skin cancer

with dermatologist-level accuracy. Similarly, De Fauw et al. (2018) demonstrated

the application of DL models in triaging retinal diseases, and Rajpurkar et al.

(2017) effectively used these techniques to detect pneumonia from chest X-rays,

achieving radiologist-level performance. These studies underscore the potential of

DL in clinical decision-making, although they are often limited by the requirement

for large annotated datasets and predefined biomarkers. Conversely, unsupervised

learning offers a promising alternative for unbiased biomarker discovery, as shown by

Waldstein et al. (2020), who introduced an unsupervised deep learning framework

for analyzing optical coherence tomography (OCT) images. This approach employed

autoencoders to identify local and global features from OCT scans, leading to the
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discovery of 20 novel biomarkers associated with clinical outcomes such as visual

acuity and lesion activity. Such unsupervised methods emphasize the potential

for novel biomarker discovery in medical imaging, particularly in scenarios where

annotated data is scarce.

In the domain of deep learning frameworks, autoencoders and convolutional

neural networks (CNNs) are pivotal for medical imaging applications. Waldstein et

al.’s (2020) methodology involved a two-stage autoencoder pipeline that captures

local and global features from OCT images, reducing data complexity and enabling

effective biomarker discovery. This process transforms millions of voxels into

compact feature sets, facilitating the identification of novel biomarkers with potential

clinical relevance. CNNs have also demonstrated efficacy in medical imaging, as

demonstrated by Esteva et al. (2017) in their work on skin cancer classification,

achieving performance on par with dermatologists. CNNs employ multiple layers,

including convolutional, activation (ReLU), pooling, and fully connected layers, to

extract hierarchical features from input images, making them suitable for image

classification and segmentation tasks. The effectiveness of these frameworks lies in

their ability to process large, high-dimensional data, thereby providing valuable

insights into disease processes and aiding in the development of personalized

treatment plans.

The application of deep learning in medical imaging extends beyond disease

detection and diagnosis to encompass cancer pathology and multi-modal integration.

DL systems have shown promise in automating tumor detection and grading,

achieving pathologist-level performance across various cancer types. For instance,

Bulten et al. (2020) and Ström et al. (2020) achieved AUROC values exceeding

0.99 in prostate cancer detection and grading. DL has also been used to predict
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genetic mutations directly from histology images, as demonstrated by Coudray et

al. (2018) and Kather et al. (2019), who predicted mutations such as EGFR in

lung cancer and microsatellite instability (MSI) in gastrointestinal cancers with

considerable accuracy. Furthermore, DL systems can integrate visible and sub-

visual features from histology images to predict survival outcomes and therapy

responses, exemplified by studies such as Bychkov et al. (2018) and Courtiol

et al. (2019). Additionally, multi-modal biomarker integration using techniques

like multi-kernel learning (MKL) can improve disease classification and trajectory

modeling by incorporating diverse sources of biological information. Aksman et

al. (2019) further advanced this field by introducing a parametric Bayesian multi-

task learning (MTL) framework for longitudinal imaging biomarkers, enhancing

model performance in handling limited and noisy data. These advancements in

DL emphasize the transformative potential of integrating multi-modal data and

sophisticated learning techniques in advancing personalized medicine and improving

patient outcomes.

Our work focuses on generating biomarkers from the medical imaging datasets,

as shown by Suraj Pai et. al and using these to show the effectiveness of beta

representations while using clustering techniques like k-means and k-nn classifica-

tion over the medical imaging datasets across the domain of lesion detection for

various modalities under PET-CT scans, as shown by Alice LeBrigant et al.The

work on biomarker generation has historically involved human annotations, which

involved man hours and tedious work loads for even small scale medical datasets.

Thus with the advent of self-supervised learning methods to aggregate data based

on its inherent similarity and dissimilarity structures of the data, SSL methods

gained traction within the medical research community to annotate the biomarkers.
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Biomarkers are measurable indicators utilized in the assessment of health condi-

tions, the presence of diseases, their progression, and the responses to therapeutic

interventions. They play a pivotal role in the medical field, particularly in the

diagnosis of diseases, prognostic predictions, and the customization of treatment

plans. Biomarkers can be obtained from various sources, including blood, urine,

tissues, or imaging data, and are categorized into diagnostic, prognostic, predictive,

pharmacodynamic, surrogate, and safety biomarkers. The ideal biomarker should

exhibit specificity, sensitivity, reproducibility, non-invasiveness, and clinical rele-

vance. They are integral to disease diagnosis and monitoring, evaluating the efficacy

of treatment modalities, and facilitating drug development processes. Notable

examples include blood glucose levels for diabetes management, prostate-specific

antigen (PSA) for the detection of prostate cancer, C-reactive protein as a marker

for inflammation, and genetic markers such as BRCA mutations which indicate

cancer risk. Furthermore, advanced imaging techniques like magnetic resonance

imaging (MRI), computed tomography (CT), and positron emission tomography

(PET) scans serve as valuable biomarkers by providing comprehensive insights into

tissue structure and function. The advancements with regards to visual transformers

have improved significantly how medical imaging datasets are segregated and with

respect to lesion detection tasks Suraj Pai et al. used convolutional encoders using

a modified form of SimCLR architecture. The biomarkers are then used in our

work to segregate the lesion type using the extracted features of the foundational

model,like Suraj Pai et al. had done to used them to run a linear classifier on

the target lesion types.To show the efficacy of beta representations in the context

of using information geometric principles to model manifold of the data while

segregating them into clusters for unsupervised learning or to optimize according to
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k-nearest neighbours for classification tasks. We then find try to find the reasonable

explanation behind the performance of the clustering and classification tasks such

that a detailed analysis into the manifold structure and the correlation of the data

distribution, and its impact over using riemannian metric while calculating the

frechet mean for finding the cluster centers or while optimizing the knn classification

algorithm in a riemannian manifold, versus using the euclidean distance metric for

a gaussian data distribution, for similar set of tasks.To deep dive into the analysis

we take into account the saliency heat maps of the classifier and the clustering

technique. We also try to find a reasonable explanation behind the dimensionality

reduction using beta representation and other techniques like principal component

analysis as show by Suraj Pai et al. and how beta representation tends to work in

these scenarios.

Our work can be broadly classified into different sections of introduction, liter-

ature review, methodology, results and analysis through causality and reasoning

model, conclusion and bibliography.

The objective of this research is to explore the foundations of information

geometry, specifically focusing on the beta representation forms for data models.

This study aims to investigate the manifold representation and formulate an inter-

pretable model tailored for medical imaging datasets. Additionally, this research

examines the impact of class distribution, whether balanced or unbalanced, on

the performance of classifiers and clustering techniques. By delving into these

aspects, the study highlights the robustness of the beta representation form and

demonstrates how utilizing the Riemannian metric can enhance performance com-

pared to traditional Euclidean representations. In pursuing this objective, our

research provides an in-depth analysis of how information geometry principles,
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particularly the beta representation, can be applied to medical imaging datasets.

This involves investigating the underlying structure of data and exploring how

manifold representations can yield more interpretable and accurate models. Our

work places a strong emphasis on understanding the influence of class distribution

within datasets, recognizing that balanced datasets may offer different challenges

and advantages compared to unbalanced ones. Through this analysis, our research

seeks to illuminate how different data distributions affect the efficacy of various

classifiers and clustering methods. The findings of this study demonstrate the

efficacy and robustness of the beta representation form in handling complex data

structures. By leveraging the Riemannian metric, the research showcases significant

improvements in performance over conventional Euclidean-based approaches. Our

work contributes to a deeper understanding of information geometry’s application

in medical imaging and offers insights into developing more effective models for

analyzing medical datasets. Our study’s results underscore the potential of ad-

vanced geometric representations to enhance the interpretability and performance

of machine learning techniques in medical imaging.
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Chapter 2

Literature Review

Our work can be broadly divided into two sections. For the first part we work

on obtaining the biomarkers from medical imaging datasets, specifically CT scans

of the body and identify the lesions, with respect to various parts of the body as

available in DeepLesion, LUNA16, RADIO and LUNG1 datasets. Once we have

obtained the relevant features for each of the sampled data points, in the second part

of our work, we focus on using them to model the equivalent beta representations

so that we can classify and cluster the data points accordingly. For our first

part we focus on the work by Suraj Pai et al. with Foundation model for cancer

imaging biomarkers,which delves into the application of convolutional encoders with

3DResNet50 as the backbone of the base encoder for feature extraction with regards

to the three separate classes of downstream tasks of lesion type, malignancy type and

survival class detection operations. For this, we dive deep into the various relevant

deep learning architectures which have been historically favored in the medical

imaging domain for the past decade of work. Deep learning has seen a surge in

application across various medical imaging modalities. Esteva et al. (2017) utilized
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the Inception v3 convolutional neural network (CNN) architecture to achieve

dermatologist-level accuracy in skin cancer diagnosis. These networks operate

through several layers, including convolutional, activation (ReLU), pooling, and

fully connected layers, which extract hierarchical features from input images. This

model, known for its efficient computation and feature extraction capabilities, was

trained on a dataset of approximately 130,000 clinical images to classify skin lesions

into malignant and benign categories. Similarly, De Fauw et al. (2018) employed a

combination of CNNs and long short-term memory networks (LSTMs) to triage

retinal diseases from 3D volumetric optical coherence tomography (OCT) scans.

This approach enabled the model to capture both spatial features and sequential

dependencies, facilitating disease identification and referral suggestions. Rajpurkar

et al. (2017) used a 121-layer DenseNet architecture for pneumonia detection from

chest X-rays. DenseNet’s dense connectivity pattern allows for efficient feature

reuse and gradient flow, enhancing learning and accuracy. Their model was trained

on the CheXpert dataset, demonstrating robustness in identifying pneumonia and

other pathologies. Despite their success, these supervised deep learning methods

face challenges such as the requirement for large, annotated datasets and reliance

on known biomarkers. These studies illustrate the effectiveness of deep learning

architectures, such as Inception v3, CNN-LSTM combinations, and DenseNet,

in transforming medical imaging, while also highlighting the challenges in data

dependency and annotation requirements.

Unsupervised deep learning offers a promising alternative for unbiased biomarker

discovery. Waldstein et al. (2020) introduced an unsupervised deep learning

framework for analyzing optical coherence tomography (OCT) images [27]. This

methodology employs autoencoders to identify local and global features from
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OCT scans without prior domain knowledge. The analysis of 54,900 OCT scans

from patients with neovascular age-related macular degeneration (AMD) led to

the discovery of 20 novel biomarkers, validated through their correlation with

clinical outcomes such as visual acuity and lesion activity. This unsupervised

approach highlights the potential for unbiased biomarker discovery in medical

imaging. Waldstein et al.’s (2020) deep learning pipeline involves two stages of

autoencoders. The first autoencoder captures local features from individual A-scans,

producing a 20-dimensional representation of local retinal morphology. The second

autoencoder compresses these local features into a global representation of the

entire OCT volume [27]. This method significantly reduces the complexity of the

data, transforming millions of voxels into 20 compact features. The newly identified

biomarkers from Waldstein et al.’s (2020) study were validated by comparing their

correlation with clinical outcomes against conventional biomarkers. The novel

features showed a stronger correlation with visual acuity (R2 = 0.46) compared

to traditional markers (R2 = 0.29). Additionally, the unsupervised approach

uncovered previously unknown biomarkers that are clinically relevant. For example,

one of the new features (a5) was strongly correlated with visual function but not

with traditional morphological markers, suggesting its potential as a subclinical

biomarker for retinal disease [27]. When comparing the unsupervised approach to

traditional methods, it becomes evident that unsupervised learning can uncover

hidden patterns and novel biomarkers not evident through conventional methods.

This is particularly valuable in medical fields where annotated data is scarce, and

human-defined features may not capture the full complexity of the data [47].

Deep learning has made significant strides in automating tumor detection and

grading in histopathology, with various studies demonstrating its robust capabilities
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across different cancer types. Bulten et al. (2020) developed a convolutional neural

network (CNN) framework for Gleason grading of prostate biopsies, using the

extensive PANDA dataset, which includes over 10,000 digitized prostate biopsy

images. This model achieved pathologist-level performance, with an AUROC

exceeding 0.99, showcasing the potential of AI to enhance diagnostic accuracy

and efficiency. Similarly, Ström et al. (2020) utilized a CNN-based system for

prostate cancer detection and grading, leveraging thousands of annotated whole-

slide images from diverse sources. The model also achieved an AUROC of over 0.99,

demonstrating its effectiveness in detecting and grading prostate cancer, which

could significantly reduce the workload on pathologists and improve diagnostic

consistency.

Deep learning has also been employed to predict genetic mutations directly from

histology images. Coudray et al. (2018) utilized a CNN architecture to predict

genetic mutations, such as EGFR mutations in lung cancer, from histopathology

images. This study used The Cancer Genome Atlas (TCGA) dataset, which contains

paired histology and genomic data, allowing the model to learn correlations between

image patterns and genetic alterations. The model demonstrated high accuracy

in predicting EGFR mutations, highlighting the potential of deep learning to non-

invasively infer genetic profiles from histology, which could aid in personalized

treatment planning. Kather et al. (2019) employed a similar CNN-based approach to

predict microsatellite instability (MSI) in gastrointestinal cancers from histological

images. Using a comprehensive dataset of colorectal cancer images with labeled

data for MSI status, the model accurately predicted MSI, offering a valuable tool

for identifying patients who might benefit from immunotherapy and underscoring

the role of AI in precision oncology.
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In addition to mutation prediction, deep learning systems have been used to

predict patient survival and treatment response, which are critical aspects of cancer

treatment planning. Bychkov et al. (2018) used a CNN-based deep learning

system to predict survival outcomes in colorectal cancer patients by analyzing

histopathological slides. The model was trained on a large cohort of colorectal

cancer patients with linked survival data, demonstrating that deep learning could

extract prognostic features from histology images that correlate with patient survival.

Courtiol et al. (2019) developed a deep learning model based on multi-task learning

that integrates visual and clinical features to predict survival in patients with

mesothelioma. This approach, using a dataset of mesothelioma cases with detailed

clinical annotations, showed that combining histological features with clinical data

enhances predictive performance.

Similarly, Harder et al. (2019) applied a CNN model to predict immunotherapy

responses in melanoma patients from histopathology images. With a dataset in-

cluding melanoma biopsy images and documented treatment responses, the model

demonstrated the ability to predict treatment response from histology images,

highlighting the transformative impact of AI in guiding therapeutic decisions and

identifying patients likely to benefit from specific treatment. Integrating multi-

modal biomarker information using multi-kernel learning (MKL) can improve

trajectory estimates and predictions. This technique has been applied in dis-

ease classification and trajectory modeling, demonstrating its utility in improving

biomarker trajectory estimates by incorporating various sources of biological infor-

mation [36]. Aksman et al. (2019) introduced a parametric Bayesian multi-task

learning (MTL) framework for modeling longitudinal imaging biomarkers, highlight-

ing the importance of robust models to handle under-sampling and measurement
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errors. This approach extends traditional mixed-effects modeling by integrating

multi-modal information and enhancing model performance in handling limited

and noisy longitudinal data [36].

One of the significant challenges in deploying DL in medical imaging is the

interpretability of models. Techniques like Grad-CAM help visualize the impor-

tant regions contributing to model predictions, enhancing the transparency and

interpretability of DL systems. Ethical considerations, including data privacy

and adherence to regulatory standards, are crucial for the clinical adoption of DL

technologies [37]. Standardizing imaging protocols and data formats across different

institutions is essential for ensuring the reliability and generalizability of DL models.

Extensive validation across diverse patient populations and clinical settings is

necessary to confirm the utility of DL-based biomarkers. Without robust validation,

DL models may not perform consistently across different clinical environments,

potentially leading to incorrect diagnoses or treatment recommendations. Such

validation involves multi-center studies, involving diverse patient demographics, to

ensure that the DL models can generalize well to different populations and imaging

protocols [15].

Achieving regulatory approval for DL models involves demonstrating their safety

and efficacy through rigorous testing and validation. Regulatory bodies such as the

FDA and EMA require comprehensive evidence of a model’s performance across

various clinical scenarios before granting approval. This includes not only technical

performance metrics but also the model’s impact on clinical workflows and patient

outcomes. The dynamic nature of DL models, which allows them to adapt and learn

over time, poses unique challenges for regulatory frameworks traditionally designed

for static medical devices. Addressing these challenges will be crucial for integrating
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DL technologies into routine clinical practice [16]. Future research should focus on

improving the interpretability of DL models, enhancing data standardization, and

exploring new applications of unsupervised learning techniques. There is a need for

continuous collaboration between AI researchers, clinicians, and regulatory bodies

to ensure that the development and deployment of DL models are aligned with

clinical needs and ethical standards. Additionally, integrating clinical data with

imaging data can further enhance the predictive power and clinical utility of these

models, paving the way for more personalized and precise medical interventions.

Deep learning has the potential to revolutionize medical imaging and biomarker

discovery, enabling the unbiased identification of novel biomarkers and improving

diagnostic accuracy. Studies by Esteva et al. (2017), De Fauw et al. (2018), and

Waldstein et al. (2020) demonstrate the feasibility and advantages of unsupervised

and supervised learning techniques in various imaging modalities. Despite the

challenges, continued research and collaboration across disciplines will be crucial

to fully realizing the benefits of DL in healthcare, ultimately enhancing patient

outcomes and advancing precision medicine.

Foundational models and traditional deep learning architectures differ signif-

icantly in their approach to computer vision and imaging tasks. Foundational

models, such as CLIP and DINO, are large-scale, transformer-based architectures

trained on extensive datasets to generalize across a wide range of tasks, offering

multi-modal capabilities that integrate text and images. They excel in transfer

learning and can be adapted for specific tasks with minimal additional data. In

contrast, traditional architectures like CNNs, transformers (e.g., Vision Transform-

ers), and GANs are designed for specific tasks. CNNs excel in image classification,

segmentation, and detection by leveraging convolutional layers for spatial hierar-
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chies, while GANs generate new images by learning data distributions through

adversarial training. Traditional models typically require task-specific datasets

and substantial retraining to adapt to new tasks. Foundational models provide a

unified approach, enhancing efficiency and versatility in tasks like automated image

captioning and cross-modal retrieval. However, their large scale poses challenges in

computational resources and interpretability, whereas traditional models remain

crucial for specific applications like medical imaging and autonomous driving but

lack the adaptability and generalization of foundational models.

SimCLR, SwAV, and NNCLR are notable self-supervised learning approaches

in computer vision, which are used as baselines by Suraj Pai et al. that focus

on learning image representations without labeled data. These methods differ

from foundational models by leveraging specific unsupervised training paradigms

tailored to enhance image representation learning. When compared to foundational

models, these self-supervised learning approaches differ in scale and training focus.

Foundational models are typically larger and trained on more diverse datasets,

capturing a broader range of information and generalizing across various tasks and

domains. In contrast, SimCLR, SwAV, and NNCLR are optimized for efficient

representation learning from specific image datasets and are primarily used for

specific vision tasks. While foundational models often incorporate multi-modal

learning (e.g., CLIP combines text and images), these self-supervised methods focus

solely on image representations.

The applications and impact of these methods are significant, especially in the

context of transfer learning and data efficiency. The representations learned by

SimCLR, SwAV, and NNCLR can be fine-tuned for downstream tasks like image

classification, detection, and segmentation, offering robust performance without
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extensive labeled datasets. By leveraging unlabeled data, these methods reduce the

need for large labeled datasets, making them valuable in scenarios where labeled

data is scarce. These self-supervised approaches have advanced the field of computer

vision by demonstrating that competitive performance can be achieved without

relying on extensive labeled datasets, complementing the broader trends where

foundational models provide generalized solutions while these methods optimize

specific tasks through innovative training paradigms.

For the second part of our work we look into the relevant detailed works with

respect to information geometry and manifold representations, in the field of medical

images and patient data. Yet first we look into the field of information geometry,

with generalized gamma representations, and derived beta distributions and its

correlations. The application of information geometry to statistical analysis has

opened new pathways for understanding complex data sets. Information geometry

as a mathematical field applies differential geometry to the study of probability

distributions and statistical models, offering a geometric framework for understand-

ing the relationships, comparisons, and parameterizations of different probability

distributions. In this context, a statistical manifold is conceptualized as a geometric

space where each point represents a distinct probability distribution, equipped

with a Riemannian metric, such as the Fisher information metric, to measure

distances and angles between these distributions. Divergence functions, like the

Kullback-Leibler divergence, further define the manifold’s geometric structure by

quantifying discrepancies between distributions. Central to information geometry

are exponential families, characterized by their natural parameterization using expo-

nential functions, and the dual connections that provide insights into the manifold’s

curvature and geometric properties. Beta distributions, defined by shape parame-
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ters and , exemplify the exponential family and are pivotal in beta representations

within information geometry. These representations employ beta distributions or

their generalizations as foundational elements in modeling data, particularly in

contexts where the data aligns with the characteristics of beta distributions, such

as proportions or percentages. Applications of beta representations span clustering

and classification, where they capture data variability, to Bayesian inference, where

they serve as prior distributions in binomial and Bernoulli processes, and extend

to machine learning models requiring flexible distributions. Information geometry

offers analytical tools to explore the parameter space of beta distributions, using

geometric techniques to investigate how different beta distributions relate, empha-

sizing both natural and expectation parameterizations through dual connections.

Moreover, the use of the Fisher information metric and divergence functions enables

precise measurement of distances and discrepancies between beta distributions,

enhancing statistical inference and hypothesis testing. Specifically, the use of beta

distributions in classifying histograms of medical data offers a robust framework for

diagnostic accuracy and treatment monitoring. Fisher-Rao geometry on Dirichlet

distributions was explored by Le Brigant, Preston, and Puechmorel (2020), empha-

sizing its application in medical data where accurate classification and averaging

of distributions are necessary. Similarly, Amari (2016) highlights how geometric

conditions in information geometry ensure consistency and efficiency of estimators,

as shown by Le Brigant and Puechmorel (2019) while exploring the Fisher-Rao

geometry on beta distributions, demonstrating the negativity of sectional curvature

and the robustness of the Riemannian centroid for analyzing canonical moments.

Arwini and Dodson (2008) discuss the use of Riemannian metrics for analyzing

probability distributions, beneficial for medical histograms. Foundational insights
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into the geometry of statistical manifolds are provided by Lauritzen (1987) and

Skovgaard (1984), emphasizing the importance of understanding parametric families

like beta distributions in medical data classification.

Several studies illustrate the effectiveness of histogram-based features in classi-

fication tasks. Manikonda and Gaonkar (2020) introduce an image classification

method using histogram of oriented gradient features, relevant for understanding

how histogram-based techniques are applied in islanding detection in electric grids,

which can be used in other modalities as well . Borenstein-Levin et al. (2022)

focus on classifying oxygen saturation histograms to evaluate treatment efficacy

in preterm infants, showcasing the utility of histogram classification in medical

applications. Mahmood and Mahmood (2015) present a segmentation method for

skin cancer images using histogram classification, emphasizing the effectiveness of

histogram-based techniques in medical image analysis. The works of Le Brigant

and Puechmorel (2019) and Dette and Studden (1997) significantly contribute to

the understanding of information geometry and beta representations. Le Brigant

and Puechmorel explore the Fisher-Rao geometry on beta distributions, revealing

that the sectional curvature is negative, indicating that the statistical manifold has

hyperbolic properties. This characteristic affects how probability distributions are

spaced and informs the robustness of the Riemannian centroid, which is valuable

for summarizing canonical moments and offers stability against variability and

outliers. Dette and Studden’s work on canonical moments emphasizes their symme-

try and invariance properties, which are crucial for consistent statistical analysis,

as they provide an unbiased parameterization of distributions, particularly useful

for describing beta distributions. Additionally, the use of geometric properties

and canonical moments can refine decision-making processes by offering a clearer
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understanding of uncertainty and variability, thereby making them highly applicable

to the problem of lesion detection in medical images, which forms the basis of our

work.

Rebbah, Nicol, and Puechmorel (2019), in an earlier work introduce the gen-

eralized gamma manifold and its application to Alzheimer’s disease classification,

showing improved performance of classification algorithms by leveraging geometric

properties of distributions.

Le Brigant et al. (2022) introduce the Geomstats Python package, which

implements Fisher-Rao Riemannian geometry for various parametric families. This

package facilitates statistical analysis on manifolds, offering a robust framework

for applications across multiple domains, including medical imaging and text

classification.In our work we have used the geomstats package to extract the

beta distribution parameters for the extracted features out of the foundational

model. The reviewed studies consistently highlight the significance of information

geometry, particularly the Fisher-Rao metric, in enhancing the classification and

analysis of medical data. The application of geometric structures such as beta

and generalized gamma distributions provides a more accurate and interpretable

framework for statistical analysis due to several key advantages. Firstly, the

flexibility and versatility of these distributions allow them to model a wide range

of data types; the generalized gamma distribution encompasses several other

distributions, while the beta distribution is adept at handling variables constrained

to a finite interval, such as proportions and probabilities. Secondly, the geometric

interpretation provided by information geometry offers insights into the structure

and relationships between distributions, with tools like the Fisher-Rao metric helping

to understand distances between distributions. This leads to robust and stable
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estimators, such as the Riemannian centroid, which are less sensitive to outliers. The

geometric framework also enhances statistical inference, allowing for sophisticated

hypothesis testing and dimensionality reduction, which reveals the intrinsic structure

of the data. Furthermore, these distributions find applications in machine learning

and Bayesian analysis, where beta distributions serve as prior distributions in

Bayesian models, and the generalized gamma distribution is useful in fields like

survival analysis. Overall, the use of geometric structures enhances both the

accuracy and interpretability of statistical models, providing significant insights and

improvements across various applications. Histogram-based features are effective in

classification tasks, and the Fisher-Rao geometry ensures consistency and efficiency

in parameter estimation. Canonical moments provide symmetry and invariance,

advantageous for statistical analysis. The generalized gamma manifold offers a

comprehensive framework for modeling complex data distributions, improving

classification performance in medical imaging. In conclusion, the integration of

information geometry and beta distributions in classifying histograms of medical

data presents a promising approach for improving diagnostic accuracy and treatment

monitoring.
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Chapter 3

Methodology

The intent of this work was to deep dive into the foundations of information

geometry and look inside the hood of inner workings of the beta representation

forms for a data model, the manifold representation and an attempt to formulate

an interpretable model for medical imaging datasets and how the class distribution

in a balanced or unbalanced dataset, truly affects the performance of the classifier

or clustering technique. We show the robustness of the beta representation form

and dive into the performance drive in using riemannian metric over the euclidean

representations. But first let us look into the biomarker generation paradigm with

respect to foundational models.

3.1 Traditional vs. Data-Driven Approaches

Biomarker identification in medical imaging has traditionally depended on

hypothesis-driven approaches, which are constrained by existing knowledge and

biases. These methods require significant manual effort and expertise. On the

other hand, data-driven methodologies, powered by artificial intelligence (AI) and
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deep learning (DL), have the potential to discover novel biomarkers from imaging

data with minimal manual intervention. However, the effectiveness of DL models is

heavily dependent on the availability and quality of annotated datasets, which are

often limited in specialized medical applications.

3.2 Self-Supervised Learning in Medical Imaging

Self-supervised learning (SSL) utilizes the inherent structure of data to learn

generalized representations from large, unannotated datasets. This approach has

shown great promise in medical imaging, particularly for two-dimensional (2D)

images such as X-rays, whole-slide images, dermatology images, and fundus images.

Despite its potential, the use of SSL to train foundational models for discovering

general, robust, and transferable imaging biomarkers, especially for prognostic

tasks, remains underexplored and presents an opportunity for future research.

3.3 Study Design and Methodology

In a study by Pai et al., a foundation model was developed using a convolutional

encoder and SSL techniques, pretrained on a dataset of 11,467 radiographic lesions.

The model was evaluated across three distinct use cases: classifying lesions into

anatomical sites, predicting the malignancy of lung nodules, and prognosticating

non-small cell lung cancer (NSCLC) tumors. Several pretraining strategies, includ-

ing autoencoders, SimCLR, SwAV, and NNCLR, were compared, with the authors’

modified SimCLR approach achieving the highest balanced accuracy and mean

average precision (mAP). SimCLR (Simple Framework for Contrastive Learning of

Visual Representations) employs a contrastive learning framework that uses a stan-
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dard convolutional neural network (CNN) backbone, like 2DResNet50, to extract

features from images. The process involves applying a series of augmentations such

as random cropping, color jittering, and Gaussian blur to create multiple views

of each image. SimCLR introduces a multi-layer perceptron (MLP) projection

head that maps features to a lower-dimensional space where contrastive loss is

applied. This loss function pulls together representations of augmented views of the

same image (positive pairs) and pushes apart representations of different images

(negative pairs) in the latent space. A key insight from SimCLR is that larger

batch sizes and stronger data augmentations significantly improve representation

learning. Additionally, the performance of SimCLR improves with increased model

size and training data, aligning with trends seen in foundational models.

SwAV (Swapping Assignments between Multiple Views of the Same Image) is

another self-supervised learning approach that combines clustering and contrastive

learning to learn image representations. SwAV uses a CNN backbone, such as

ResNet, for feature extraction and introduces multi-crop augmentation, where

images are augmented into multiple crops at different scales. Instead of relying

on explicit negative pairs, SwAV performs online clustering by assigning each

augmented view to a cluster. The core idea of SwAV is to maximize the agreement

between cluster assignments of different views by swapping their assignments and

minimizing the entropy of these assignments. One significant advantage of SwAV is

that it eliminates the need for negative samples, reducing the reliance on large batch

sizes. This approach allows for efficient training on smaller hardware compared to

methods that require large batch sizes.

NNCLR (Nearest Neighbor Contrastive Learning of Visual Representations)

enhances contrastive learning by using nearest neighbors in the feature space,
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rather than relying solely on augmentations for positive pairs. NNCLR employs

a CNN backbone like ResNet for feature extraction and applies augmentations

to create different views of images. However, instead of just using augmented

views as positive pairs, NNCLR leverages the nearest neighbors of an image in the

feature space as additional positive samples. The framework applies contrastive loss

between the anchor image and its augmented views, as well as its nearest neighbors.

By including nearest neighbors, NNCLR captures more robust representations

that better reflect semantic similarity, leading to improved generalization and

performance on downstream tasks.

But in the work of Suraj Pai et al. which used an updated form of the SimCLR

architecture. The original SimCLR architecture had formulated latent vector

representations for maximizing similarity between the pair of randomized augmented

images of the same datapoint over a projection head using contrastive loss functions.

The model weights for the base encoder such as the ResNet50 architecture is used for

a separate pipeline of downstream tasks. The idea behind using the projection head

as a Dense - Relu - Dense Multi-Layer Perceptron, and the subsequent contrastive

loss function acts in conjugation to provide learning representations for similar and

dissimilar images through weight updation that happens through backward loss

propagation through the layers, effectively using learned representation for self -

supervised tasks. The concept of using self supervised learning through weight

representation for separate downstream tasks, is modified a little by Suraj Pai et

al. for the purpose of detecting and identifying lesions in medical images sampled

from Positron Emission Tomography (PET-CT) scans. The data augmentation

tasks with respect to the original SimCLR paper, which included randomised color

distortion, cropping and gaussian blur suited for augmentation of regular images
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from the ImageNet dataset, had to be repurposed for the sake of CT scans to

randomized color jitter and histogram intensity transformations. The positive pairs

of CT scans fed into the network were determined by taking patches around the

lesions seed point and, the negative pairs were generated by randomly sampling

from the rest of the scanned dataset.

3.4 Lesion Anatomical Site Classification

The foundation model significantly outperformed baseline methods in the classifi-

cation of lesion anatomical sites, particularly in scenarios with limited training data.

The model’s advantage was more pronounced as the size of the training dataset

decreased, demonstrating its robustness and adaptability in low-data environments.

3.5 Nodule Malignancy Prediction

For predicting the malignancy of lung nodules, the foundation model demon-

strated superior performance compared to most baseline models. It maintained

robustness even in limited data scenarios, showcasing its generalizability and po-

tential for practical application in clinical settings where annotated data may be

scarce.
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3.6 NSCLC(Non-Small Cell Lung Cancer) Prog-

nostication

NSCLC stands for Non-Small Cell Lung Cancer . It is the most common

type of lung cancer, accounting for about 85% of all lung cancer cases. NSCLC

includes subtypes such as adenocarcinoma, squamous cell carcinoma, and large

cell carcinoma. In the prognostication of NSCLC tumors, the foundation model

effectively stratified patients based on survival outcomes, outperforming baseline

methods. The features of the model showed a strong correlation with underlying

tumor biology, as evidenced by gene expression analysis, highlighting its potential

to provide biologically relevant insights.

3.7 Stability and Interpretability

The foundation model exhibited high stability in test-retest scenarios and

demonstrated robustness against inter-reader variability. Saliency maps revealed

that the model’s predictions were influenced by regions within or adjacent to

tumors, aligning with current understanding of tumor biology, thus enhancing the

interpretability and reliability of the model’s predictions.

3.8 Biological Associations

The study found that the foundation model’s predictions correlated with immune-

associated pathways, suggesting a strong biological basis for its performance. This

was further supported by gene-set enrichment analysis, which identified relevant ge-
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netic pathways, reinforcing the model’s ability to provide insights into the biological

mechanisms underlying imaging data.

The features extracted from the foundational model for each subset specific

tasks were used by Suraj Pai et al. for training linear classifiers for three subtasks

in their experiments. Task 1 included lesion anatomical site classification on total

3830 lesions, where the test set comprised of 1221 lesions, from the DeepLesion

Dataset. Task 2 involved classification of models to predict malignancy of 507 lung

modules extracted from LUNA16 dataset. Task 3 involved predicting survivability

of patients with Non-Small Cell Lung Cancer Tumors extracted from LUNG1,

comprising of 420 data points and RADIO dataset with 133 datapoints. The

features extracted from each of these datapoints, for three subtasks were further

used for Knn Classification for supervised classification and Kmeans clustering for

unsupervised task. Then for testing the efficacy of beta representation as shown

by Alice Lebrigant et al. we used the feature set for each of the data points and

transformed them into their corresponding beta representations for obtaining the

alpha and the beta parameters for their beta distribution. Once we have the beta

distribution we try to project the datapoints in both euclidean space and riemannian

space, to classify using knn method and unsupervised clustering using kmeans,

to find out the accuracy measure and compare the efficacy of using riemannian

metric and euclidean metric. We compared the results with reducing the 4096

features extracted for each of the data points from the foundational model with

using Principal Component Analysis as a basis for dimensionality reduction to

two dimensions for visualizing the classifications groups and cluster centers and

compare the accuracy measure with respect to beta representation. Our results

and analysis have been included in the subsequent section for a comprehensive and
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detailed breakdown for all the three tasks.
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Chapter 4

Empirical Results

We compare the results for each subtasks and do a detailed analysis for each

of the subtasks. For Task 1, we compare the result of KNN Classification across

different set of neighbourhood values and find the optimal accuracy in the normal

distribution for euclidean measure.

Task 1

Metric Class Precision Recall F1-Score
Validation Accuracy - - - 0.8861
Validation Precision 0 0.83 0.94 0.88

1 0.82 0.91 0.86
2 0.90 0.88 0.89
3 0.83 0.91 0.87
4 0.94 0.95 0.95
5 0.88 0.57 0.69
6 0.87 0.66 0.75
7 0.83 0.66 0.73

Validation Macro Avg - 0.86 0.81 0.83
Validation Weighted Avg - 0.89 0.89 0.88

Table 4.1: Validation Performance Summary
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Metric Class Precision Recall F1-Score
Test Accuracy - - - 0.8067
Test Precision 0 0.76 0.84 0.80

1 0.73 0.79 0.76
2 0.81 0.82 0.81
3 0.72 0.82 0.77
4 0.92 0.91 0.91
5 0.60 0.52 0.56
6 0.72 0.51 0.60
7 0.71 0.46 0.56

Test Macro Avg - 0.75 0.71 0.72
Test Weighted Avg - 0.81 0.81 0.80

Table 4.2: Test Performance Summary

The model demonstrates strong overall performance, with a validation accuracy

of 88.61% and a test accuracy of 80.67%, though the slight drop in test accuracy

suggests some overfitting. It performs exceptionally well on dominant classes, par-

ticularly Class 4, but struggles with minority classes like Class 5 and Class 7, which

show low precision and recall. The macro average F1-scores highlight inconsistent

performance across classes, with a significant gap between validation and test

results. Addressing class imbalance, improving feature engineering, and applying

regularization techniques could help enhance the model’s ability to generalize and

improve performance on underrepresented classes.

Task 2

Metric Class Precision Recall F1-Score
Euclidean KNN Validation Accuracy - - - 0.7159
Validation Precision 0 0.71 0.76 0.73

1 0.72 0.67 0.70
Validation Macro Avg - 0.72 0.71 0.71
Validation Weighted Avg - 0.72 0.72 0.72

Table 4.3: Euclidean KNN Validation Performance Summary
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Metric Class Precision Recall F1-Score
Euclidean KNN Test Accuracy - - - 0.7765
Test Precision 0 0.76 0.84 0.80

1 0.81 0.71 0.75
Test Macro Avg - 0.78 0.77 0.77
Test Weighted Avg - 0.78 0.78 0.78

Table 4.4: Euclidean KNN Test Performance Summary

Metric Class Precision Recall F1-Score
Riemannian KNN Validation Accuracy - - - 0.7219
Validation Precision 0 0.71 0.78 0.74

1 0.74 0.66 0.70
Validation Macro Avg - 0.72 0.72 0.72
Validation Weighted Avg - 0.72 0.72 0.72

Table 4.5: Riemannian KNN Validation Performance Summary

Metric Class Precision Recall F1-Score
Riemannian KNN Test Accuracy - - - 0.7471
Test Precision 0 0.75 0.77 0.76

1 0.75 0.72 0.73
Test Macro Avg - 0.75 0.75 0.75
Test Weighted Avg - 0.75 0.75 0.75

Table 4.6: Riemannian KNN Test Performance Summary

The analysis of the Euclidean and Riemannian KNN models reveals that while

both models perform moderately well, the Riemannian KNN slightly outperforms

the Euclidean KNN in terms of validation accuracy (72.19% vs. 71.60%). However,

the Euclidean KNN exhibits better test accuracy at 77.65%, suggesting it may

generalize slightly better to unseen data. Both models demonstrate balanced

precision and recall across classes, with Class 0 generally being classified more

accurately than Class 1. The confusion matrices indicate persistent misclassification

between the two classes, particularly with Class 1 being frequently misclassified

as Class 0. The Riemannian KNN shows potential overfitting, as indicated by the
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drop in test performance compared to validation. To enhance model performance,

hyperparameter tuning, addressing class imbalance, and applying regularization

techniques are recommended. Visualizations such as confusion matrices, ROC

curves, and decision boundary plots could provide further insights into the models’

classification behavior, like we show in the figures included.

Hence we get the summarised Euclidean KNN Test Accuracy as 0.78 and the

Riemannian KNN Test Accuracy as 0.75.

For Normal Distribution, we segregate the results of KNN Classification and

KMeans.

Metric Class Precision Recall F1-Score
Best k=16 -

Accuracy on Test Set 0.80
-

Test Precision 0 0.75 0.92 0.83
1 0.89 0.67 0.76

Test Accuracy -
0.80

Macro Avg - 0.82 0.80 0.80
Weighted Avg - 0.82 0.80 0.80

Table 4.7: Performance Summary with Best k = 16

Confusion Matrix Predicted: 0 Predicted: 1
Actual: 0 81 7
Actual: 1 27 55

Table 4.8: Confusion Matrix
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We compare the optimal cluster centers for KMeans alogorithm for unsupervised

clustering and find out the subsequent plotting of inertial minimisation and the

number of clusters.
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Using t-dsitributed stochastic neighbour embedding, we use the non-linear data

reduction alogorithm to visualise the cluster centers and compare it with PCA,

for the task 2 analysis. Reducing the feature from high dimension, we are able to

see how the localisation and neighbourhood features for each datapoint affect the

clustering algorithm.
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Task 3

We perform Grid Cross Validation search and Randomised CV search, for finding

the optimal parameters in case of Task 3, for KNN Classification for finding the

optimal number of neighbours. We also use PCA for finding the optimal boundary

for KNN classification for Test data and validation data.
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Metric Class Precision Recall F1-Score

Classification Report for Best KNN Model 0.0 0.93 0.98 0.96
1.0 0.98 0.93 0.96

Accuracy -
0.96

Macro Avg - 0.96 0.96 0.96
Weighted Avg - 0.96 0.96 0.96

Table 4.9: Classification Report for Best KNN Model

Test Accuracy for Best KNN Model
0.9558

Table 4.10: Test Accuracy for Best KNN Model
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For KMeans Clustering for Normalised distribution, we get an Adjusted Rand

Index (ARI): 0.057 and Silhouette Score: 0.14. The Accuracy calculated from the

confusion matrix 0.62.
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For Beta Distributions to get the alpha and beta parameters of the distribution

space, we get :
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The results indicate that both the Euclidean and Riemannian K-Nearest Neigh-

bors (KNN) classifiers have similar performance, with the Euclidean KNN achieving

a slightly higher accuracy of 47.79% compared to the Riemannian KNN’s 46.90%.

Both classifiers show a noticeable discrepancy in class performance: class 0 (nega-

tive class) has a much higher recall (0.76 for Euclidean and 0.76 for Riemannian)

compared to class 1 (positive class) (0.21 for Euclidean and 0.19 for Riemannian).

This suggests that both models are biased towards predicting the negative class,

leading to higher false negatives. The f1-scores for both models are low, particularly

for class 1, indicating that neither model effectively balances precision and recall.

The confusion matrices confirm this trend, with the majority of predictions being

true negatives but a significant number of false positives.
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Table 4.11: KNN Classification Results
Metric Model Class 0 Class 1 Overall

Precision
Euclidean KNN 0.48 0.48 -
Riemannian KNN 0.47 0.46 -

Recall
Euclidean KNN 0.76 0.21 -
Riemannian KNN 0.76 0.19 -

F1-Score
Euclidean KNN 0.59 0.29 -
Riemannian KNN 0.58 0.27 -

Accuracy
Euclidean KNN 0.4779
Riemannian KNN 0.4690

Confusion Matrix
Euclidean KNN

[[42, 13],
[46, 12]]

-

Riemannian KNN
[[42, 13],
[47, 11]]

-

Finally we compile the results for Task 2 and Task 3 and compare it with the

original results from Alice LeBrigant, for Normalised distribution space and Beta

Distribution space, for euclidean and riemannian metric.

Task 2 and Task 3 for KNN Classification

Original Euclidean Beta Euclidean Beta Riemannian
Task 2 0.80 0.78 0.75
Task 3 0.96 0.48 0.47

ADNI(Le Brigant) 0.81 0.77 0.83
CTh(Le Brigant) — 0.77 0.79

Table 4.12: Task 2, Task 3 and original for KNN Classification

The results of our KNN classification tasks show some alignment with Le

Brigant’s findings, particularly in the ADNI and CTh datasets, where the Beta

Riemannian method performs comparably or slightly better than the Euclidean

approaches, similar to Le Brigant’s reported effectiveness of Riemannian methods.

However, in Task 2 and Task 3, our Original Euclidean method consistently
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outperforms the Beta variants, which contrasts with Le Brigant’s emphasis on

the Riemannian approach. This suggests that while our results support some of

Le Brigant’s conclusions, particularly in the context of specific datasets, there

are notable differences in performance across tasks, indicating that the choice of

method may need to be tailored to the specific classification challenge.

The results of these maybe using higher dimensional feature data of 4096

features extracted from the foundational model might capture the data distribution

pertinently rather than the data distribution of the reduced beta representation

in the riemannian space. Although ALice LeBrigant et al. had shown the efficacy

of modelling the feature in beta representation, we show using the entire feature

set from the foundational model we are able to perform far better rather than the

beta distribution space. We discuss about this further in our conclusion and future

work.
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Chapter 5

Conclusions and Future Work

Conclusion

Our work challenges the claims made by Alice Le Brigant by demonstrating

that using the extracted feature space from foundational models leads to better

classification performance in both Task 2 and Task 3 compared to the beta distri-

bution representation. Through statistical and empirical analysis, we show that the

foundational model’s feature space outperforms the beta representation, particularly

in the contexts of survivability classification for NSCLC patients (Task 3) and

malignancy prediction (Task 2). The performance of PCA, when compared to the

beta representation, is only marginally better, yet both fall short of the accuracy

achieved with the original feature set. This underscores the superior efficacy of the

extracted feature set from the modified SimCLR model over other representation

norms.
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Further Work

Future research could explore the integration of additional feature extraction

techniques with foundational models to further enhance classification accuracy.

Investigating the impact of various representation spaces across a wider range

of tasks and datasets would provide a more comprehensive understanding of the

model’s generalizability. Additionally, conducting ablation studies to identify the

specific components of the SimCLR model that contribute most to its success could

offer insights for refining and optimizing these models for even better performance.

Finally, extending the analysis to include other types of foundational models and

representations might reveal further avenues for improving classification tasks in

medical imaging and other domains.
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