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Types of Cryptosystems : 

•  Symmetric Key Cryptography 

 

• Asymmetric Key Cryptography  



 Symmetric Key Cryptography 

• Example of 
implementations : 

• DES[2], 3-DES[3] , 
AES[4], IDEA, and 
BLOWFISH 
 



Problems of Symmetric key Cryptography : 

• Key establishment − Before any communication, both the sender and 
the receiver need to agree on a secret symmetric key. It requires a 
secure key establishment mechanism in place, usually provided by 
asymmetric key cryptography. 

 

• Trust Issue − Since the sender and the receiver use the same 
symmetric key, there is an implicit requirement that the sender and 
the receiver ‘trust’ each other. If an attacker gets hold of the shared 
private key, all secrecy in the message passing is lost. 



Asymmetric key 
Cryptography : 

• First proposed as a theoretical 
model by Diffie and Hellman[1]. 

• Some Properties include : 

•  Decryption and Encryption are 
inverse functions to each other that 
is: 

 D(E(M)) = M as well as E((D(M))=M 

• D and E functions are easy to 
compute  

• By publicly revealing D, the user 
does not reveal an easy way to 
compute E. 

• Some implementations include :  

RSA [5] , ElGamal [6] and Diffie-
Hellman Key Exchange [1] program 

 

 



RSA [5] Encryption System 

• RSA was the first practical model suggested by Rivest,Shamir and Adelman 
implementing public key encryption system. 

• A user Alice has a set of public key (n,e) and a private key (n,d). 

• Here n is the product of 2 "random" large primes : n = p.q 

• The integer d is chosen such that gcd(d,(p-1).(q-1)) = 1 

• Thus we get e which is a multiplicative inverse of d modulo(p-1)(q-1) 

    e.d = 1 (mod (p-1)(q-1) ) 

• If any user wants to send any data to Alice, he encrypts the Message using public 
key of Alice. 

• Thus the Ciphertext C is generated by : C = E(M) = M^e (mod n) 

• The Message can be retrieved by Alice through the Decryption function 
implemented using her private key : M = D(C) = C^d (mod n) 

 

 



Problems in implementation of RSA algorithm 

• The security of RSA lies in factoring of large integers composed of 
large primes being a hard problem. If n can be factored into p,q then 
private key d can be easily recovered. 

 

• In theory, if two primes p and q are chosen uniformly at random from 
all possible 512-bit primes, then the chance of getting the same 
prime twice is approximately 2^(−256) (birthday collision probability). 

 

• This idea is challenged by Heninger et al. [10] & Lenstra et al. [9]   



Idea of Common Factor Attack as Proposed by 
Heninger et al.[10] 
• N1 = p.q1 

• N2 = p.q2 

• For 1024-bit RSA, it is expected that the primes p and q are chosen independently 
and uniformly at random from all possible 512-bit primes, satisfying p != q 

• Heninger et al. [10]  traced the cause of this vulnerability to sloppy 
implementations of RSA in embedded systems, especially in routers, firewalls, 
and other network devices. In case of random prime generation, RSA 
implementations tend to use pseudo-random number generators (PRNGs). 

•  However, as the smaller network devices try to generate the primes at boot, 
quite often they lack a full-entropy source for extracting the random seeds,and 
hence the primes they generate eventually have a much higher probability of 
collision. 



Idea of Common Factor Attack 
as Proposed by Heninger et 
al.[10] using Bernstein's[8] 
factoring algorithm. 

• Compute the Product of all RSA 
moduli P=πNi, using a binary 
tree of partial products. 

• Compute Zi = P mod Ni^2 using 
remainder tree. 

• Compute gcd(Zi/Ni,Ni) to the list 
of all vulnerable RSA modulis. 



Results : 

• Used batchwise GCD algorithm to find out vulnerable moduli.Found 
that 0.75% of TLS certificates shared RSA primes, and conjectured 
that another 1.70% were susceptible to compromise. 

• But required almost 32 GB of memory and around 60 to 70 GB of 
storage for scratch calculations.Thus there is a HUGE Computational 
Bottleneck. 

 



Method Proposed by Hastings et al. [7] 
• Proposed a partially parallel 

implementation of batch-wise GCD 
• Dataset is partitioned in subsets 

and the product tree for computed 
such that Pi = π Ni is constructed 
individually for each subset. 

• Provides full parallelization in the 
first phase of the algorithm, the 
remainder tree is still constructed 
considering all subset products 
produced by the product trees. 

• However, enormous Memory and 
Computational resource was used. 
They used a quad 6-core 3.40 Ghz 
Intel Xeon E7-8893 Processors with 
3 TB RAM and over 500 GB of 
memory to implement their 
parallelised approach. 



Is there a better way to implement the Batch-wise 
GCD algorithm in a resource constrained 
environment ? 
• Divide dataset randomly into p parts, where p ~ |D|/|m| , D is the size of 

the large dataset and m is the size of the dataset which can fit into the 
resource constrained unit. Thus |D|>>|m|. 

• We apply the batch-wise GCD algorithm over each partitions separately. 

• Obviously there will be instances where the gcd(Ni,Nj) > 1 and Ni, Nj are in 
separate partitions. 

• To overcome this, we use multiple randomly split partitions of the dataset, 
run batchwise GCD and aggregate the results. 

• The relationship between number of partitions p , the level of accuracy 
desired epsilon(€) and the number of iterations k can be formalised 
through theorem 1 stated later in the slides. 
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Thank you ! 


