
Parallelized Common Factor
attack on RSA

Aneek Roy

BCSE Final Year

Roll - 001410501072

Types of Cryptosystems :

• Symmetric Key Cryptography

• Asymmetric Key Cryptography

 Symmetric Key Cryptography

• Example of
implementations :

• DES[2], 3-DES[3] ,
AES[4], IDEA, and
BLOWFISH

Problems of Symmetric key Cryptography :

• Key establishment − Before any communication, both the sender and
the receiver need to agree on a secret symmetric key. It requires a
secure key establishment mechanism in place, usually provided by
asymmetric key cryptography.

• Trust Issue − Since the sender and the receiver use the same
symmetric key, there is an implicit requirement that the sender and
the receiver ‘trust’ each other. If an attacker gets hold of the shared
private key, all secrecy in the message passing is lost.

Asymmetric key
Cryptography :

• First proposed as a theoretical
model by Diffie and Hellman[1].

• Some Properties include :

• Decryption and Encryption are
inverse functions to each other that
is:

 D(E(M)) = M as well as E((D(M))=M

• D and E functions are easy to
compute

• By publicly revealing D, the user
does not reveal an easy way to
compute E.

• Some implementations include :

RSA [5] , ElGamal [6] and Diffie-
Hellman Key Exchange [1] program

RSA [5] Encryption System

• RSA was the first practical model suggested by Rivest,Shamir and Adelman
implementing public key encryption system.

• A user Alice has a set of public key (n,e) and a private key (n,d).

• Here n is the product of 2 "random" large primes : n = p.q

• The integer d is chosen such that gcd(d,(p-1).(q-1)) = 1

• Thus we get e which is a multiplicative inverse of d modulo(p-1)(q-1)

 e.d = 1 (mod (p-1)(q-1))

• If any user wants to send any data to Alice, he encrypts the Message using public
key of Alice.

• Thus the Ciphertext C is generated by : C = E(M) = M^e (mod n)

• The Message can be retrieved by Alice through the Decryption function
implemented using her private key : M = D(C) = C^d (mod n)

Problems in implementation of RSA algorithm

• The security of RSA lies in factoring of large integers composed of
large primes being a hard problem. If n can be factored into p,q then
private key d can be easily recovered.

• In theory, if two primes p and q are chosen uniformly at random from
all possible 512-bit primes, then the chance of getting the same
prime twice is approximately 2^(−256) (birthday collision probability).

• This idea is challenged by Heninger et al. [10] & Lenstra et al. [9]

Idea of Common Factor Attack as Proposed by
Heninger et al.[10]
• N1 = p.q1

• N2 = p.q2

• For 1024-bit RSA, it is expected that the primes p and q are chosen independently
and uniformly at random from all possible 512-bit primes, satisfying p != q

• Heninger et al. [10] traced the cause of this vulnerability to sloppy
implementations of RSA in embedded systems, especially in routers, firewalls,
and other network devices. In case of random prime generation, RSA
implementations tend to use pseudo-random number generators (PRNGs).

• However, as the smaller network devices try to generate the primes at boot,
quite often they lack a full-entropy source for extracting the random seeds,and
hence the primes they generate eventually have a much higher probability of
collision.

Idea of Common Factor Attack
as Proposed by Heninger et
al.[10] using Bernstein's[8]
factoring algorithm.

• Compute the Product of all RSA
moduli P=πNi, using a binary
tree of partial products.

• Compute Zi = P mod Ni^2 using
remainder tree.

• Compute gcd(Zi/Ni,Ni) to the list
of all vulnerable RSA modulis.

Results :

• Used batchwise GCD algorithm to find out vulnerable moduli.Found
that 0.75% of TLS certificates shared RSA primes, and conjectured
that another 1.70% were susceptible to compromise.

• But required almost 32 GB of memory and around 60 to 70 GB of
storage for scratch calculations.Thus there is a HUGE Computational
Bottleneck.

Method Proposed by Hastings et al. [7]
• Proposed a partially parallel

implementation of batch-wise GCD
• Dataset is partitioned in subsets

and the product tree for computed
such that Pi = π Ni is constructed
individually for each subset.

• Provides full parallelization in the
first phase of the algorithm, the
remainder tree is still constructed
considering all subset products
produced by the product trees.

• However, enormous Memory and
Computational resource was used.
They used a quad 6-core 3.40 Ghz
Intel Xeon E7-8893 Processors with
3 TB RAM and over 500 GB of
memory to implement their
parallelised approach.

Is there a better way to implement the Batch-wise
GCD algorithm in a resource constrained
environment ?
• Divide dataset randomly into p parts, where p ~ |D|/|m| , D is the size of

the large dataset and m is the size of the dataset which can fit into the
resource constrained unit. Thus |D|>>|m|.

• We apply the batch-wise GCD algorithm over each partitions separately.

• Obviously there will be instances where the gcd(Ni,Nj) > 1 and Ni, Nj are in
separate partitions.

• To overcome this, we use multiple randomly split partitions of the dataset,
run batchwise GCD and aggregate the results.

• The relationship between number of partitions p , the level of accuracy
desired epsilon(€) and the number of iterations k can be formalised
through theorem 1 stated later in the slides.

References

1. Diffie, Whitfield, and Martin Hellman. "New directions in cryptography."
IEEE transactions on Information Theory 22.6 (1976): 644-654.

2. Diffie, Whitfield, and Martin E. Hellman. "Special feature exhaustive
cryptanalysis of the NBS data encryption standard." Computer 10.6
(1977): 74-84.

3. William C. Barker and Elaine B. Barker. 2012. SP 800-67 Rev. 1.
Recommendation for the Triple Data Encryption Algorithm (Tdea) Block
Cipher. Technical Report. NIST, Gaithersburg, MD, United States.

4. Rijmen, Vincent, and Joan Daemen. "Advanced encryption standard."
Proceedings of Federal Information Processing Standards Publications,
National Institute of Standards and Technology (2001): 19-22.

5. Rivest, Ronald L., Adi Shamir, and Leonard Adleman. "A method for
obtaining digital signatures and public-key cryptosystems."
Communications of the ACM 21.2 (1978): 120-126.

References
6. ElGamal, Taher. "A public key cryptosystem and a signature scheme based
on discrete logarithms." IEEE transactions on information theory 31.4 (1985):
469-472.
7. Hastings, Marcella, Joshua Fried, and Nadia Heninger. "Weak keys remain
widespread in network devices." Proceedings of the 2016 ACM on Internet
Measurement Conference. ACM, 2016.
8. Bernstein, Daniel J. "How to find smooth parts of integers." URL: http://cr.
yp. to/papers. html# smoothparts. ID 201a045d5bb24f43f0bd0d97fcf5355a.
Citations in this document 20 (2004).
9. Lenstra, Arjen, et al. Ron was wrong, Whit is right. No. EPFL-REPORT-
174943. IACR, 2012.
10. Heninger, Nadia, et al. "Mining Your Ps and Qs: Detection of Widespread
Weak Keys in Network Devices." USENIX Security Symposium. Vol. 8. 2012.

Thank you !

