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RSA — Most widely used Public Key Cipher

RSA Signature is used in more than 80% SSL ciphersuites in practice.
Source of data (SSL for the last 30 days) : https://notary.icsi.berkeley.edu/
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RSA — The idea of Common Factor Attack

RSA Modulus

N = pq
Security of RSA is based on intractability / hardness of integer factorization.

However, this assumption is violated if RSA moduli share a common factor:

N1 = pq1, N2 = pq2 ⇒

gcd(N1,N2) = p
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RSA — The idea of Common Factor Attack

Intuitive Assumption

If two 512-bit RSA primes p and q are chosen uniformly at random, then the
chance of getting the same prime twice is approx. 2−256 (birthday collision).

Counter-Intuitive Reality

In 2012, Heninger et al. and Lenstra et al. independently discovered that
around 0.75% of TLS certificates across the Internet shared RSA primes.

Heninger et al. also conjectured that another 1.70% may be susceptible.

In 2013, Bernstein et al. demonstrated similar vulnerabilities in RSA moduli
embedded in smart cards of Taiwan’s national “Citizen Digital Certificate”.

Heninger et al., USENIX Security Symposium, 2012
Lenstra et al., IACR Cryptology ePrint Archive, 2012

Bernstein et al., ASIACRYPT 2013
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Common Factor Attack using Batchwise GCD

Step 1 : Product Tree

P =
∏

Ni

Step 2 : Remainder Tree

zi = P mod N2
i

Step 3 : Compute

gcd(Ni , zi/Ni)

to extract common
factors (the primes)

Complexity ∼ O(mn(log n)2 log log n)

32 GB of memory and around 60 to 70 GB of storage for scratch calculations
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Common Factor Attack using Parallel Batch-GCD

In 2016, Hastings et al. proposed a parallel version of batch-GCD algorithm.

The RSA moduli dataset is partitioned
into subsets and the product tree for

P =
∏

Ni

is constructed independently for each
subset, making this stage parallel.

But, the remainder tree is still constructed considering all subset products.

Hastings et al., Internet Measurement Conference, 2016
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Our Idea — Parallellized Common Factor Attack

Our contribution — We propose a completely parallel version of batch-GCD
algorithm to achieve similar results in a resource constrained environment.

Input Dataset of RSA Moduli D

· · ·d2d1 dp−1 dp

· · ·v2v1 vp−1 vp

Set of Vulnerable RSA Moduli V

randomPartition

batchGCD

setUnion

Figure : One complete iteration of our proposed Parallelized Batch-GCD

Kumar, Roy, Sengupta, and Sen Gupta Parallelized Common Factor Attack on RSA ICISS 2017, IIT Bombay 7 / 16



Our Idea — Parallellized Common Factor Attack

Primary concern — How many iterations are enough to recover all the factors?

Theorem (Optimal number of Iterations)

Suppose there exist X vulnerable RSA moduli in input dataset D. Then our
algorithm recovers an expected number of εX vulnerable moduli if we set

k ≈ log (1− ε)
log m + log (p − 1)− log (mp − 1)

,

where ε is a user-defined accuracy parameter, m is the user-defined constraint
of the individual computing nodes, and p ∼ |D|/m is the number of partitions.

One may interpret k given D and ε as : k ≈ log (1− ε)
log (|D| − |D|/p)− log (|D| − 1)
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Proof of Theorem — Optimal number of Iterations

Consider the complete dataset of RSA moduli as an induced graph GD, where
the RSA moduli Ni are vertices and an edge e(Ni ,Nj ) exists iff gcd(Ni ,Nj) > 1.

Partitioning the RSA moduli dataset is identical to partitioning graph GD, and
thus, our algorithm discovers edges within subgraphs, and misses the others.

GD

g1

g2

g3

g4

Kumar, Roy, Sengupta, and Sen Gupta Parallelized Common Factor Attack on RSA ICISS 2017, IIT Bombay 9 / 16



Proof of Theorem — Optimal number of Iterations

GD

g1

g2

g3

g4

The probability that we will miss a specific edge
e(Ni ,Nj ) in GD after one execution of our algorithm:

Pi=1 = 1−
total number of edges in {g1, g2, . . . , gp}

total number of edges in GD

≈ 1−
edges in complete supergraph of {g1, g2, . . . , gp}

edges in complete supergraph of GD

≈ 1−
p ×

(m
2

)(mp
2

) = 1−
m − 1

mp − 1
=

m(p − 1)
mp − 1

The probability that we will miss a specific edge e(Ni ,Nj ) in GD after k iterations:

Pi=k = (Pi=1)
k ≈

(
m(p − 1)
mp − 1

)k

The fraction of edges recovered after k iterations is ε ≈ 1−
(
|D| − |D|/p
|D| − 1

)k
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Our Algorithm — Parallelized Batch-GCD

Input : Set of moduli D, constraint m, accuracy ε
Output: V — set of vulnerable moduli in D

1 p ← ceiling(|D|/m) ;
2 k ← chooseIteration(m, p, ε) ;
3 for i ← 1 to k do
4 {d1,d2, . . . ,dp} ← randomPartition(D, p) ;
5 {v1, v2, . . . , vp} ← batchGCD({d1,d2, . . . ,dp}) ;
6 Vi ← setUnion({v1, v2, . . . , vp}) ;
7 end
8 V ← setUnion({V1,V2, . . . ,Vk}) ;

Line 2 : k given D and ε is chosen as k ≈ log (1− ε)
log (|D| − |D|/p)− log (|D| − 1)

The algorithm recovers ε fraction of vulnerable RSA moduli from the dataset.
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Our Algorithm — Practical Performance Results

Checked ε for various choices of p = 2,4,8,16,32, and k = 1,2,3, . . . ,9
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In practice, with Intel Core i5 4210U CPU, 4 GB RAM
p = 8 partitions and k = 3 iterations resulted in > 90% recovery
p = 32 partitions and k = 5 iterations resulted in > 85% recovery

Kumar, Roy, Sengupta, and Sen Gupta Parallelized Common Factor Attack on RSA ICISS 2017, IIT Bombay 13 / 16



Scope — Potential extensions of Our Proposal

Extend our algorithm to include the partially parallel tree of Hastings et al.

Extend our proposal to include the more sophisticated approaches of finding
vulnerable RSA moduli, using Coppersmith-type lattice based attacks, as
done by Bernstein et al. on the Taiwan’s national “Citizen Digital Certificate”.
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Thank You!
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