Emotion Based Categorization of Music Using Low Level Features and Agglomerative Clustering

Rajib Sarkar, Saikat Dutta, Aneek Roy and Sanjoy Kumar Saha Computer Science & Engg. Dept., Jadavpur University

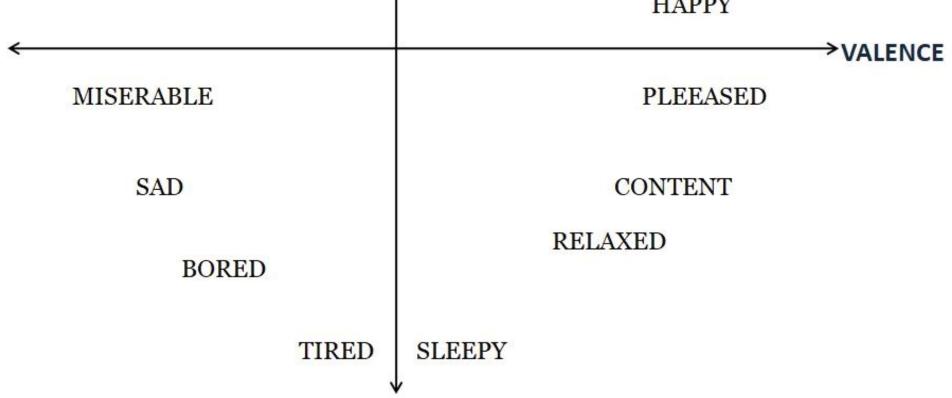
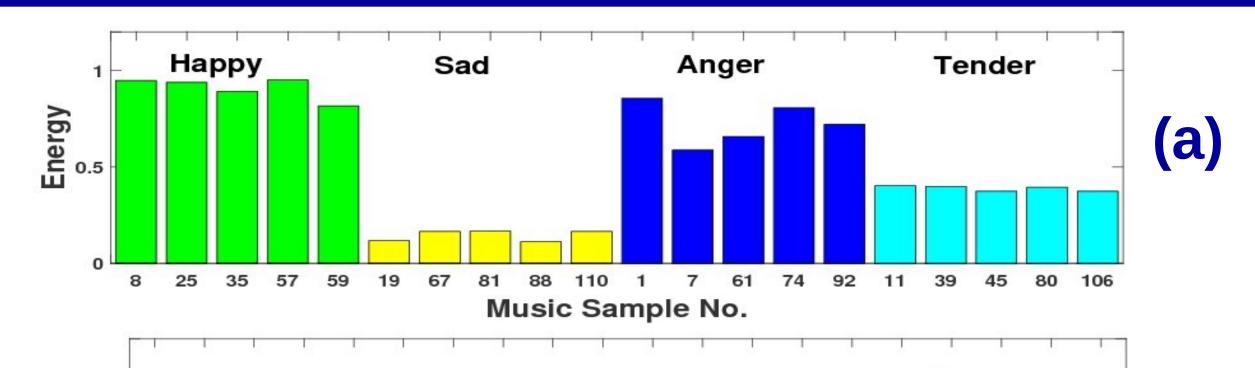
Research Goals	Challenges	
 Emotion perception based acoustic feature selection. End goal is to categorize music excerpts according to their emotional properties. 	ARO TENSE AFRAID ANGRY AFRAID FRUSTRATED	AROUSED

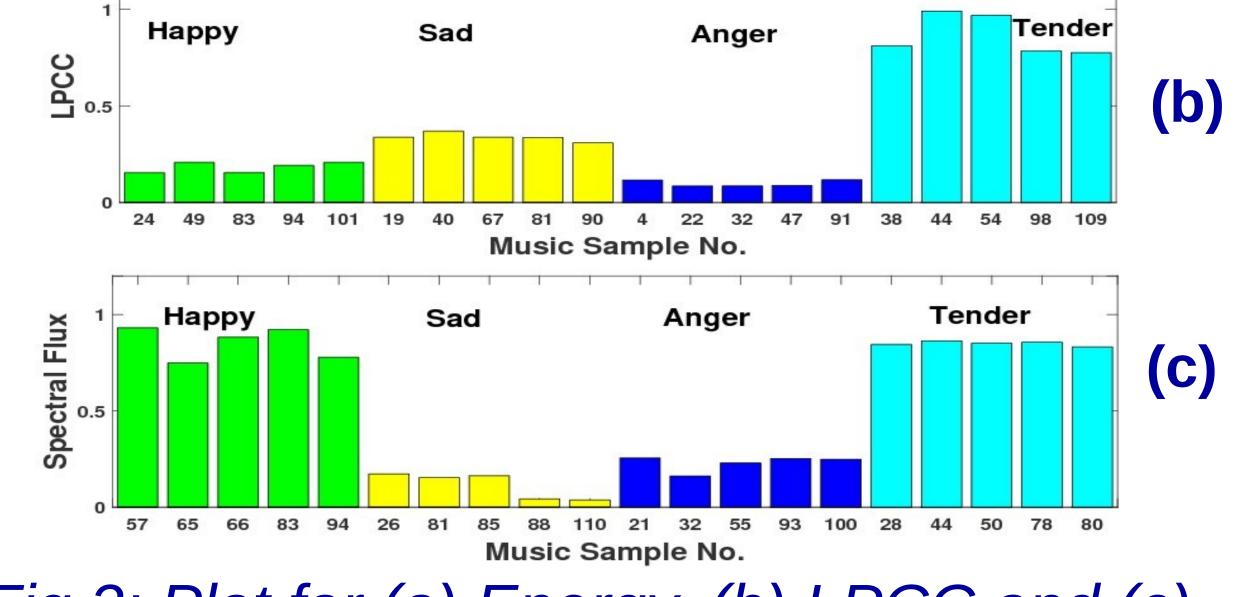
Related Work

- Saari, Eerola and Lartillot (2011):
 - -Wrapper selection method to select suitable features from a wide range of acoustic features.
 - -Classifier: Naive Bayes, k-NN and SVM.
- Gomez & Caceres (2017):
 - -Used features like spectral centroid, spectral roll-off and MFCC.
 - -Classifier: k-Nearest Neighbors (kNN).

Feature Selection

• The way musical accents are patterned through time leads listeners to anticipate the emotional


Fig 1: Thayer's 2D Emotion Plane

- Emotion is subjective.
- The way of experiencing emotional feelings is the most difficult to describe or measure.

essence.

- Feature set is designed considering the relation between emotional response and musical structure.
- Features Considered:
 - RMS Energy, ZCR, Linear prediction cepstral coefficients (LPCC), Spectral Features (Flux, Rolloff, Flatness Measure and Crest Factor).

Fig 2: Plot for (a) Energy, (b) LPCC and (c) Spectral Flux for different category of emotion.

Classifier	Method	Features Used	Accuracy
	K-means	Set A – Energy, Spectral	59.09%
• K-Means clustering:		Rolloff, ZCR	
-K is taken as the number of emotional groups.		Set B – Spectral Features	63.63%
	Clustering	(Crest Factor, Flatness, Flux,	
 Position of cluster-centroids are updated by averaging the points present in respective clusters. 		Rolloff), LPCC	
	SVM	Set A	51.43%
 Agglomerative clustering: 	SVM	Set B	58.08%
-a bottom-up approach to hierarchical clustering.	k-NN BE	Mode Majorness, Key clarity,	56.50%
 Initially assumed that each data points belong to a 		dynamical, rhythmical,	
separate cluster.	(2011)*	structural	
 In each iteration two closest clusters are merged. 	SVM BE	Dynamical, rhythmical, pitch,	54.30%
-When number of clusters reaches the number of	Saari et al.	structural, timbral, Harmony	
emotional category the process stops.	(2011)*	(Wrapper selection)	

*Saari, P., Eerola, T., Lartillot, O.: Generalizability and simplicity as criteria in feature selection: Application to mood classification in music. IEEE Transactions on Audio, Speech, and Language Processing 19(6) (2011) 1802–1812 NCVPRIPG 2017, IIT Mandi, 16 - 19 December, 2017.